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Abstract : 

  In this paper, we have solved Einstein-Maxwell field equations for charged perfect 

fluid sphere using different assumptions on metric potentials. We have also calculated and 

discussed physical parameters like pressure, matter density, electric field and charged 

density for the distribution. Further we have discussed boundary conditions using Reissner-

Nordstrom metric to fix up the constants.  
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1. INTRODUCTION : 

 Various research workers have shown their interest in the study of charged perfect 

fluid distributions which has been one of the most fascinating systems in general relativity. 

As the Einstein-Maxwell field equations do not completely determine the system, different 

solutions were obtained by many authors by using different conditions to supplement the 

field equations. The fluid sphere of uniform density has been discussed by Kyle and Martin 

[14] and Mehra and Bohra [16]. Interior solutions for charged fluid sphere have also been 

investigated by Wilson [24], Kramer and Neugebauer [15], Krori and Barau [13], Junevicous 

[12] and Florides [10] by suing different conditions to supplement the field equations. The 

supplementary conditions were used partly to specify the physical model and partly to 

simplify the mathematics. 

  The Einstein-Maxwell field equations for spheres of charged dust have been 

investigated by Papapertrous [19], Bonnor and Wickramasuriya [3] and Raychaudhuri [20]. 

It is known that the pressure less charged distribution in equilibrium will have the absolute 

value of the charge to mass ratio as unity in relativistic units (De and Ray Chaudhuri [8]. A 

number of authors have already studied charged fluid distribution in equilibrium. Efinger 

[9], Bailyn and Eimerl [4] and Nduka [17, 18] have presented some solutions of charged 

static spherical distributions which are not free form singularity at the origin. Some exact 

static solutions of Einstein-Maxwell field equations representing a charged fluid sphere were 

http://www.ijmra.us/
http://www.ijmra.us/


 ISSN: 2347-6532Impact Factor: 6.660  

 

38 International Journal of Engineering and Scientic Research 

http://www.ijmra.us, Email: editorijmie@gmail.com 

 

 

obtained by Singh and Yadav [22], Shi-Chang [23] has found some conformal flat interior 

solutions of the Einstein Maxwell equations for a charged stable static sphere. These 

solutions satisfy physical conditions inside the sphere. Xingxiang [26] obtained an exact 

solution by specifying matter distribution and charge distribution. The metric is regular and 

can be matched to the Reisser-Nordstrom metric and pressure is finite. In the limit of 

vanishing charge, the solution can reduce to the interior solution of an uncharged sphere. 

Buchdahl [5] has also considered some regular general relativistic charged fluid spheres. 

Some other workers in this line are Glazer [11], Srivastava [23] Bonnor and Vaidya [2], 

Cooperstock and Cruz [7] Chakravarti and De [6], Baliyn [1], Whitman and Burch [25]. 

  In this paper, considering spherically symmetric line element we have obtained some 

solutions of Einstein-Maxwell field equations using different assumptions on metric 

potentials. We have also discussed boundary conditions. The pressure, matter density, 

electric field and charge density for the distribution have been also found.  

2. The Field Equations  

  We consider the line element in the form  

(2.1) 
2 2 2 2 2 2 2ds e dt e dr r (d sin d )         

where  and  are functions of r only. 

  The Einstein-Maxwell field equations for the charged perfect fluid distribution in 

general relativity are  

(2.2) v v v

1
R Rg 8 T

2
       

(2.3) 
v

vF; 4 J 4 u       

(2.4) [ v,v]F 0   

where Tv is the energy momentum tensor, J is the charged current four vector, Rv is the 

Ricci tensor and R the scalar of curvature tensor. 

  For the system under study the energy momentum tensor vT
 splits up into two part 

viz. vT
 and vE

 for matter and charges respectively. 

(2.5) v v vT T E     
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where 

(2.6)  v vT p) u u p  


        

with 

(2.7)  u u 1

   

The non-vanishing component of vT
 are  

(2.8) 
1 2 3 4

1 2 3 4T T T p and T       

Here p is internal pressure,  and  are densities of matter and charges respectively, u is the 

velocity vector of the matter. 

  The static condition is given by 

(2.9)  
1

1 2 3 4
2

44u u u 0 and u g


    

i.e., 
4 2u e



  

The electromagnetic energy momentum tensor vE
 is given by 

(2.10)    
lm

v v v lm

1
E F F F F

4

  

      

we assume the field to be electrostatic i.e., 4k ,k kF 0 and F      , where  is the 

electrostatic potential.  

  Thus the Einstein-Maxwell field equation reduces into the form 

(2.11)  

1

2 2

1 1
e 8 E

r r r

  
     

 
 

(2.12)  
2 2

1 1
e 8 p E

r r r

  
      

 
 

(2.13)  
21 1 1 1

e 8 p E
4 4 4 4 r

       
               

  
 

where  
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(2.14)  
41

41E F F   

and  

(2.15)  

41
41 41 / 2F 2

4 F F
2 r 2

    
     

 
 

  By the use of equations (2.11) – (2.13), we get the expressions for p,  and E as  

(2.16)  

2

2 2

e 1 1
8 p

2 2r 2 4 4 2r r 2r

            
        

 
 

(2.17)  

2

2 2

5 1 1
8 e

4r 4 8 8 4r 2r 2r

            
        

 
 

(2.18)  

2

2 2

1 1
e

2 4 4 2r 2r r r

            
      

 
 

3. Solution of The field Equations : 

  We have four equations (2.11) – (2.13) and (2.15) in six variables (, E, p, , , ). 

Here we take  and  two free variables. We choose 

(3.1) 

2n

1

2n

k r k
e

r k

 



 

(3.2) 

2

2

3

k r k
e

4k

 
  

  where k1, k2, k3 and k are arbitrary constants Using equation (3.1) and (3.2) in 

equations (2.15) – (2.18) we get  

(3.5) 

2n 2

2 2

2n 2

1 2

r k 3k r 4kk
8 p

2(k r k) (k r k)

  
   

  
 

 

2n 2 2

1 2

2n 2n 2 2

1 2

(k 1)r (nk){2k r k} 1

2(k k)(k r k)(k r k) 2r

 
 

  
 

(3.4) 

2n 2n 1 2

1 3

2n 2n 2n 2

1 1 2

r k nkr (k 1)(6k r 5k)
8

2(k r k) (r k)(k r k)(k r k)

  
  

   
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2

2

2n 2 2

1

k r 1 1

2(k r k) r 2r


  

 
 

(3.5)  

2n 2 2

2

2n 2 2

1 2

r k k r
E

2(k r k) (k r k)

 
 

 
 

  

2n 2 2

1 2

2n 2n 2 2 2

1 2

nkr (k 1)(2k r k) 1 1

(r k)(k r k)(k r k) r 2r

  
  

   
 

(3.6)  

41 2r
412 1

2 2n 2n

2 1

F 2 k r nkr (k 1
4 F

r r k r k (r k)(k r k

   
      

     
 

 

1/ 2
2

2

3

k r k

4k

 
 
 

 

BOUNDARY CONDITIONS  

  We impose the following boundary conditions : 

1. e– is is continuous across the boundary (r = rb) of the fluid space. 

2. The function e is continuous across the boundary (r = rb) of the fluid sphere. 

3. The function 
de

dr



 is continuous across the boundary of the fluid sphere.  

  The exterior metric (i.e. for r > rb) is given by Reissner-Nordstrom metric which is  

(3.7) 

2 2
2 2 2 2b b

2 2

2M Q 2M Q
ds 1 dt 1 dr r

r r r r

   
         
   

 

 
2 2 2(d sin d )      

where Qb = Q(rb) and M is the total mass of the sphere given by 

(3.8) 

br

2

0

M 4 (r),r dr    

  The constants appearing in the solution are fixed by the following equations : 

(3.9)  

2n 2

b b

2n 2

1 b b b

r k 2M Q
1

k r k r r

 
   

  
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(3.10)  

2n 2

2 b b

2

3 b b

k r k 2M Q
1

4k r r

 
   
 

 

(3.11)  

2

2 b b

2 3

3 b b

k r M Q

4k r r
   

  Now we consider the following different cases  

Case (I) : When n = 1. Then we get  

(3.12)  

2

1

2

k r k
e

r k

 



 

(3.13)  

2

2

3

k r k
e

4k

 
  

In this case, p, , E and  given by 

(3.14)  

2 2

2 2

2 2 2

1 2

r k 3k r 4kk
16 p

k r k (k r k)

 
  

 
 

   

2

1 2

2 2 2 2 2

1 2

(k 1)(k){2k r k} 1 1

(r k)(k r k)(k r k) r r

 
  

   
 

(3.15)  

2 2

1 2

2 2 2 2

1 1 2

r k k(k 1)(6k r 5k)
16

k r k (r k)(k r k)(k r k)

  
  

   
 

   

2 2

2

2 2 2 2

2

k r 1 1

(k r k) r r


  

 
 

(3.16)  

2 2

2

2 2 2

1 2

r k k r
E

2(k r k) (k r k)

 
 

 
 

   

2

1 2

2 2 2 2 2

1 2

k(k 1)(2k r k) 1 1

(r k)(k r k)(k r k) r 2r

 
  

   
 

(3.17)   

41

2 1

2 2 2

2 1

F 2 k r kr(k 1)
4

r r k r k (r k)(k r k)

  
     

    
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1/ 2
2

41 2

3

k r k
F

4k

 
  
 

 

At r = 0 (i.e./ at centre) we have from above equations  

(3.13) – (3.15) 

(3.18)  2 1
0

4k k 1
16 p

k

 
   

(3.19)  1
0

5(k 1)
16

k


   

(3.20)  1
0

1 k
e

2k


  

Now continuity conditions yield  

(3.21)  

2 2

b b

2 2

1 b b b

r k 2M Q
1

k r k r r


  


 

(3.22)  

2 2

2 b b

2

3 b b

k r k 2M Q
1

4k r r


    

(3.23)  

2

2 b b

2 2

b b

k r M Q

4k r r


   

Case II 

  Here we take n = 1, k1 = 2. Thus we have  

  (3.24)  

2

2

2r k
e

r k

 



 

(3.25)  

2

2

3

k r k
e

4k

 
  

Pressure p, matter density , electric field E and charge density  in this case are given by 

(3.26)  

2 2

2 2

2 2 2

2

r k 3k r 4kk
16 p

2r k (k r k)

 
  

 
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2

1 2

2 2 2 2 2

2

(k 1)k{2k r k} 1 1

(r k)(2r k)(k r k r r

 
  

   
 

(3.27)  

2 2

2

2 2 2 2

2

(r k) k(6k r 5k)
16

(2r k) (r k)(2r k)(k r k)

 
  

   
 

 

2

2

2 2 2 2

k 1 1

(2r k) r r


  

 
 

(2.28)  

2 2

2

2 2 2

2

r k k r
E

2(2r k) (k r k)

 
 

 
 

 

2

1

2 2 2 2 2

2

(k 1)k(2r k) 1 1

(r k)(2r k)(k r k) r r

 
  

   
 

(2.29)  

41
412

2 2 2

2

F 2 k r kr
4 F

r r k r k (r k)(2r k

  
      

     
 

 

1/ 2
2

2

3

k r k

4k

 
 
 

 

Central values of these quantities are  

(3.30)  2
0

3

4k 1
16 p

4k


   

(3.31)  0

5
16

k
   

(3.32)   0

1
E

2k
  

 

4. Conclusion  

  Clearly for P0 to be + ve, we must have k > 0 and 2

1
K

k
 . Again using boundary 

conditions, we have  

(4.1) 

2 2

b b

2 2

b b b

r k 2M Q
1

2r k r r


  


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Conditions (3.21) and (3.22) remain the same. If we fix k2 then k, k3 at boundary rb can be 

fixed up.  

  Further it is believed that exact solutions of the field equations in general relativity 

for extended charged distribution will prove useful in the study of quantum field theory in 

Reimannian manifold as the question of self energy becomes answerable. As such the 

problem of finding exact solutions of coupled Einstein-Maxwell equations for static charged 

fluid sphere has attracted wide attention.  
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